A Frobenius-Schur theorem for Hopf algebras
نویسنده
چکیده
In this note we prove a generalization of the Frobenius-Schur theorem for finite groups for the case of semisimple Hopf algebra over an algebraically closed field of characteristic 0. A similar result holds in characteristic p > 2 if the Hopf algebra is also cosemisimple. In fact we show a more general version for any finite-dimensional semisimple algebra with an involution; this more general result (and its proof) may give some new insight into the classical theorem. Let G be a finite group. For h ∈ G, define θm(h) to be the number of solutions of the equation g = h, that is θm(h) = | {g ∈ G | g m = h} |. Because θm(h) is a class function it can be written as
منابع مشابه
Frobenius-Schur Indicator for Categories with Duality
We introduce the Frobenius–Schur indicator for categories with duality to give a category-theoretical understanding of various generalizations of the Frobenius–Schur theorem including that for semisimple quasi-Hopf algebras, weak Hopf C∗-algebras and association schemes. Our framework also clarifies a mechanism of how the “twisted” theory arises from the ordinary case. As a demonstration, we es...
متن کاملOn the Frobenius-schur Indicators for Quasi-hopf Algebras
Mason and Ng have given a generalization to semisimple quasiHopf algebras of Linchenko and Montgomery’s generalization to semisimple Hopf algebras of the classical Frobenius-Schur theorem for group representations. We give a simplified proof, in particular a somewhat conceptual derivation of the appropriate form of the Frobenius-Schur indicator that indicates if and in which of two possible fas...
متن کاملA Note on Frobenius-schur Indicators
This exposition concerns two different notions of Frobenius-Schur indicators for finite-dimensional Hopf algebras. These two versions of indicators coincide when the underlying Hopf algebra is semisimple. We are particularly interested in the family of pivotal finite-dimensional Hopf algebras with unique pivotal element; both indicators are gauge invariants of this family of Hopf algebras. We o...
متن کاملTwisted Frobenius–schur Indicators for Hopf Algebras
The classical Frobenius–Schur indicators for finite groups are character sums defined for any representation and any integer m ≥ 2. In the familiar case m = 2, the Frobenius–Schur indicator partitions the irreducible representations over the complex numbers into real, complex, and quaternionic representations. In recent years, several generalizations of these invariants have been introduced. Bu...
متن کاملCentral Invariants and Higher Indicators for Semisimple Quasi-hopf Algebras
In this paper, we define the higher Frobenius-Schur (FS-)indicators for finite-dimensional modules of a semisimple quasi-Hopf algebra H via the categorical counterpart developed in a 2005 preprint. When H is an ordinary Hopf algebra, we show that our definition coincides with that introduced by Kashina, Sommerhäuser, and Zhu. We find a sequence of gauge invariant central elements of H such that...
متن کامل